Bayesian

The samplesizelib.linear.bayesian contains classes: - samplesizelib.linear.bayesian.APVCEstimator - samplesizelib.linear.bayesian.ACCEstimator - samplesizelib.linear.bayesian.ALCEstimator - samplesizelib.linear.bayesian.MaxUtilityEstimator - samplesizelib.linear.bayesian.KLEstimator

class samplesizelib.linear.bayesian.ACCEstimator(statmodel, **kwards)[source]

Description of ACC Method

Parameters
  • statmodel (RegressionModel or LogisticModel) – the machine learning algorithm

  • averaging (float) – to do

  • alpha (float) – to do

  • length (float) – to do

  • begin (int) – to do

  • end (int) – to do

  • num (int) – to do

  • multiprocess (bool) – to do

  • progressbar (bool) – to do

forward(features, target)[source]

Returns sample size prediction for the given dataset.

Parameters
  • features (array.) – The tensor of shape num_elements \(\times\) num_feature.

  • target (array.) – The tensor of shape num_elements.

Returns

sample size estimation for the given dataset.

Return type

dict

class samplesizelib.linear.bayesian.ALCEstimator(statmodel, **kwards)[source]

Description of ALC Method

Parameters
  • statmodel (RegressionModel or LogisticModel) – the machine learning algorithm

  • averaging (float) – to do

  • alpha (float) – to do

  • length (float) – to do

  • begin (int) – to do

  • end (int) – to do

  • num (int) – to do

  • multiprocess (bool) – to do

  • progressbar (bool) – to do

forward(features, target)[source]

Returns sample size prediction for the given dataset.

Parameters
  • features (array.) – The tensor of shape num_elements \(\times\) num_feature.

  • target (array.) – The tensor of shape num_elements.

Returns

sample size estimation for the given dataset.

Return type

dict

class samplesizelib.linear.bayesian.APVCEstimator(statmodel, **kwards)[source]

Description of APVC Method

Parameters
  • statmodel (RegressionModel or LogisticModel) – the machine learning algorithm

  • averaging (float) – to do

  • epsilon (float) – to do

  • begin (int) – to do

  • end (int) – to do

  • num (int) – to do

  • multiprocess (bool) – to do

  • progressbar (bool) – to do

forward(features, target)[source]

Returns sample size prediction for the given dataset.

Parameters
  • features (array.) – The tensor of shape num_elements \(\times\) num_feature.

  • target (array.) – The tensor of shape num_elements.

Returns

sample size estimation for the given dataset.

Return type

dict

class samplesizelib.linear.bayesian.KLEstimator(statmodel, **kwards)[source]

Description of KL based Method

Parameters
  • statmodel (RegressionModel or LogisticModel) – the machine learning algorithm

  • averaging (float) – to do

  • epsilon (float) – to do

  • begin (int) – to do

  • end (int) – to do

  • num (int) – to do

  • multiprocess (bool) – to do

  • progressbar (bool) – to do

forward(features, target)[source]

Returns sample size prediction for the given dataset.

Parameters
  • features (array.) – The tensor of shape num_elements \(\times\) num_feature.

  • target (array.) – The tensor of shape num_elements.

Returns

sample size estimation for the given dataset.

Return type

dict

class samplesizelib.linear.bayesian.MaxUtilityEstimator(statmodel, **kwards)[source]

Description of Utility Maximisation Method

Parameters
  • statmodel (RegressionModel or LogisticModel) – the machine learning algorithm

  • averaging (float) – to do

  • c (float) – to do

  • begin (int) – to do

  • end (int) – to do

  • num (int) – to do

  • multiprocess (bool) – to do

  • progressbar (bool) – to do

forward(features, target)[source]

Returns sample size prediction for the given dataset.

Parameters
  • features (array.) – The tensor of shape num_elements \(\times\) num_feature.

  • target (array.) – The tensor of shape num_elements.

Returns

sample size estimation for the given dataset.

Return type

dict