Bayesian¶
The samplesizelib.linear.bayesian contains classes:
- samplesizelib.linear.bayesian.APVCEstimator
- samplesizelib.linear.bayesian.ACCEstimator
- samplesizelib.linear.bayesian.ALCEstimator
- samplesizelib.linear.bayesian.MaxUtilityEstimator
- samplesizelib.linear.bayesian.KLEstimator
-
class
samplesizelib.linear.bayesian.ACCEstimator(statmodel, **kwards)[source]¶ Description of ACC Method
- Parameters
statmodel (RegressionModel or LogisticModel) – the machine learning algorithm
averaging (float) – to do
alpha (float) – to do
length (float) – to do
begin (int) – to do
end (int) – to do
num (int) – to do
multiprocess (bool) – to do
progressbar (bool) – to do
-
class
samplesizelib.linear.bayesian.ALCEstimator(statmodel, **kwards)[source]¶ Description of ALC Method
- Parameters
statmodel (RegressionModel or LogisticModel) – the machine learning algorithm
averaging (float) – to do
alpha (float) – to do
length (float) – to do
begin (int) – to do
end (int) – to do
num (int) – to do
multiprocess (bool) – to do
progressbar (bool) – to do
-
class
samplesizelib.linear.bayesian.APVCEstimator(statmodel, **kwards)[source]¶ Description of APVC Method
- Parameters
statmodel (RegressionModel or LogisticModel) – the machine learning algorithm
averaging (float) – to do
epsilon (float) – to do
begin (int) – to do
end (int) – to do
num (int) – to do
multiprocess (bool) – to do
progressbar (bool) – to do
-
class
samplesizelib.linear.bayesian.KLEstimator(statmodel, **kwards)[source]¶ Description of KL based Method
- Parameters
statmodel (RegressionModel or LogisticModel) – the machine learning algorithm
averaging (float) – to do
epsilon (float) – to do
begin (int) – to do
end (int) – to do
num (int) – to do
multiprocess (bool) – to do
progressbar (bool) – to do
-
class
samplesizelib.linear.bayesian.MaxUtilityEstimator(statmodel, **kwards)[source]¶ Description of Utility Maximisation Method
- Parameters
statmodel (RegressionModel or LogisticModel) – the machine learning algorithm
averaging (float) – to do
c (float) – to do
begin (int) – to do
end (int) – to do
num (int) – to do
multiprocess (bool) – to do
progressbar (bool) – to do